0]。第三,子流层面的流量分割,同一目的地头部的数据流被分成多个子流,所有子流中的包都有相同的目的地地址,在一定程度上解决了流分割算法中的负载不平衡问题。多径并行传输架构如图2所示。除此之外,在带宽聚合体系结构中,调度算法是决定业务传输方式和业务子流调度次序[11],确保业务子流有序到达接收端的核心,接下来我们将讨论数据调度。
4带宽调度方桉制定
对于多元异构网络的数据传输,当某个路径的带宽达到一定值时,网络的带宽会不断增加,传输性能会相对稳定。为提高吞吐量,分配过多带宽会降低频谱利用率,从而导致频谱资源的浪费。在当前频谱资源日益紧张的情况下,对多径并行传输中各路带宽进行调度和管理,不仅能保证多径并行传输的传输性能,而且能有效地利用资源。为此进行处理,实现的主要步骤如下:第一,采用机器学习方法进行有效带宽估计,合理地估计每个子流可充分利用的无线带宽资源,以及以较少的带宽资源达到高吞吐率的要求,是带宽调度算法的关键。为此采用耦合拥塞控制算法,对各个子流联合控制,其表达式如下:(3)公式(3)中,MSS表示报文最大长度的常数,由协议设置,RTTi、PLRi分别表示子流所处路径的往返延迟和丢包率。第二,参数滤波处理,因为无线信道的多样性和时变特性,链路参数和路径有效带宽都会发生动态变化,且存在误差。为去除误差,对网络参数进行卡尔曼滤波器滤波,以获得精确的估计值。卡尔曼滤波是一种离散时间递推估计算法,通过对当前时刻的差分递推,根据当前状态的测量值、最后时刻的状态以及预测误差,计算出更精确的当前时刻状态作为输出。研究离散控制系统时,采用线性随机微分方程如下:(4)公式(4)中,xk、xk-1分别代表k时刻与k-1时刻的状态参数,Ak、Bk分别代表系统参数,在多模型系统中为矩阵,分别表示状态转移矩阵和输入矩阵,uk表示控制的输入参数,wk表示计算时的噪声。第三,